1,155 research outputs found

    Generalized Quantum Theory: Overview and Latest Developments

    Get PDF
    The main formal structures of Generalized Quantum Theory are summarized. Recent progress has sharpened some of the concepts, in particular the notion of an observable, the action of an observable on states (putting more emphasis on the role of proposition observables), and the concept of generalized entanglement. Furthermore, the active role of the observer in the structure of observables and the partitioning of systems is emphasized.Comment: 14 pages, update in reference

    Enhanced Charge and Spin Currents in the One-Dimensional Disordered Mesoscopic Hubbard Ring

    Full text link
    We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are {\em larger} than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small UU, where the magnetic state of the system corresponds to a charge density wave pinned to the impurities. For large UU, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.Comment: 20 RevTeX 3.0 pages, 8 figures NOT include

    Transport Properties of a One-Dimensional Two-Component Quantum Liquid with Hyperbolic Interactions

    Full text link
    We present an investigation of the sinh-cosh (SC) interaction model with twisted boundary conditions. We argue that, when unlike particles repel, the SC model may be usefully viewed as a Heisenberg-Ising fluid with moving Heisenberg-Ising spins. We derive the Luttinger liquid relation for the stiffness and the susceptibility, both from conformal arguments, and directly from the integral equations. Finally, we investigate the opening and closing of the ground state gaps for both SC and Heisenberg-Ising models, as the interaction strength is varied.Comment: 10 REVTeX pages + 4 uuencoded figures, UoU-002029

    On the concept of pressure in quantum mechanics

    Full text link
    Heat and work are fundamental concepts for thermodynamical systems. When these are scaled down to the quantum level they require appropriate embeddings. Here we show that the dependence of the particle spectrum on system size giving rise to a formal definition of pressure can, indeed, be correlated with an external mechanical degree of freedom, modelled as a spatial coordinate of a quantum oscillator. Under specific conditions this correlation is reminiscent of that occurring in the classical manometer.Comment: 7 pages, 3 figure

    The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory

    Full text link
    We present a general definition of the Poisson bracket between differential forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories and, more generally, on exact multisymplectic manifolds. It is well defined for a certain class of differential forms that we propose to call Poisson forms and turns the space of Poisson forms into a Lie superalgebra.Comment: 40 pages LaTe

    Electron spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition

    Get PDF
    We have measured the electron spin relaxation rate and the integrated spin noise power in n-doped GaAs for temperatures between 4 K and 80 K and for doping concentrations ranging from 2.7 x 10^{-15} cm^{-3} to 8.8 x 10^{-16} cm^{-3} using spin noise spectroscopy. The temperature dependent measurements show a clear transition from localized to free electrons for the lower doped samples and confirm mainly free electrons at all temperatures for the highest doped sample. While the sample at the metal-insulator-transition shows the longest spin relaxation time at low temperatures, a clear crossing of the spin relaxation rates is observed at 70 K and the highest doped sample reveals the longest spin relaxation time above 70 K.Comment: 6 pages, 4 figure
    corecore